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Summa~ 

The linearized porous wavemaker theory developed by Chwang [3] has been applied to analyze the small-ampli- 
tude surface waves produced by a piston-type porous wavemaker near the end of a semi-infinitely long channel 
of constant depth. Analytical solutions in closed forms are obtained for the free-surface wave profile, the 
hydrodynamic pressure distribution, and the net force on the wavemaker. The influence of a dimensionless 
wave-effect parameter C and a dimensionless porous-effect parameter G on the analytical results is discussed. It 
is found that when the distance between the wavemaker and the channel end-plate is a multiple of the 
half-wavelength of propagating surface waves, resonance will occur. The "wave-trapping" phenomenon due to 
resonance is also discussed. 

1. Introduction 

The classical wavemaker theory developed by Havelock [4], Biesel and Suquet [1], and 
Ursell et al. [7] has been widely used by investigators to analyze the surface waves 
produced by wavemakers in open channels, towing tanks, and model basins. In an open 
channel, a wavemaker is usually installed near the end of the channel and there is a small 
gap between the wavemaker plate and the side walls of the channel. The influence of 
leakage flow around the wavemaker on the wave amplitude was analyzed by Madsen [5]. 
He found that the leakage effect was large in reducing the wave amplitude. 

Recently, Chwang [3] developed a porou s wavemaker theory to investigate the porous 
effect of a wavemaker on free-surface gravity waves. In his linearized analysis, a porous 
wavemaker is located in the middle of an infinitely long channel. He found that the 
porous effect reduces not only the wave amplitude but also the hydrodynamic pressure 
force acting on the wavemaker. Therefore, a porous wavemaker may be desirable in 
situations where efficiency of generation of waves is of main interest with the wavemaker 
being subjected to some form of structural constraint on the maximum allowable force. 

The objective of the present paper is to apply Chwang's theory [3] to analyze 
small-amplitude surface waves produced by a piston-type porous wavemaker near the end 
of a semi-infinitely long channel of constant depth. The governing equations and boundary 
conditions for the present problem are presented in Section 2. Analytical solutions for the 
hydrodynamic pressure distribution and the total force on the porous wavemaker as well 
as on the end plate of the channel are presented in Section 3. Results on surface wave 
profile are discussed in Section 4. In particular, the resonance phenomenon and the 
associated "wave-trapping" phenomenon are also discussed in that section. 
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2. Governing equations and boundary conditions 

A piston-type porous wavemaker is placed near the end of a semi-infinitely long channel 
of constant depth (see Fig. 1). The mean position of this porous wavemaker is at x = 0 
plane and the end plate of the channel is fixed at x = - L .  The y axis points vertically 
upwards with the plane y = 0 being the bottom of the channel. The porous wavemaker 
separates the fluid in the channel into two regions; an unbounded region which extends 
from the wavemaker to infinity along the positive x direction and a finite region between 
the wavemaker and the end plate. The undisturbed fluid depth in both regions is h. As the 
wavemaker oscillates along the x-axis with a circular frequency ~ and a small horizontal 
displacement So, 

s o = d e  i°'' (d<< h), (1) 

small-amplitude surface waves are produced in both fluid regions with the disturbed free 
surface being at y = h + ~/(x, t). We shall assume that the maximum displacement d and 
the wave amplitude 7/ are very small in comparison with the undisturbed fluid depth h. 
The corresponding horizontal velocity and acceleration of the wavemaker are 

u o = i w d  e i'°t a n d  a o = - w2d e i~'t, (2) 

respectively. 
We shall assume the fluid in the channel to be inviscid and incompressible, and its 

motion irrotational. Therefore, the velocity potentials satisfy the two-dimensional Laplace 
equation 

v= ,i = 0 (; = 1, 2) ,  (3)  

where the subscript 1 refers to the unbounded region and 2 refers to the bounded region 
between the wavemaker and the end plate. The linearized free-surface conditions for the 
velocity potentials ~i are 

~2(I) i ~(I) i 
~t 2 +g--~-y = 0  at y = h  ( / = 1 , 2 ) ,  (4) 

-L 0 

Figure 1. Schematic diagram of a porous wavemaker near the end of a semi-infinitely long channe l  
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where g is the constant acceleration of gravity. The normal velocity of the fluid must 
vanish at the bottom of the channel. Therefore 

Oy = 0  at y = O  ( i = 1 , 2 ) .  (5) 

On the end plate, the normal velocity also vanishes. Hence 

002 = 0 at x = - L .  
0x 

(6) 

If the wavemaker was impermeable, we would require the normal velocities of the fluid 
on the wavemaker surfaces in both regions be the same as that of the wavemaker. 
However, the wavemaker is porous. There is a flow between the two fluid regions passing 
through the pores Of the wavemaker. Thus, the fluid in one region is connected by this 
flow to the fluid in the other region. We cannot solve for • 1 or q5 2 separately. The 
solutions for q51 and q5 2 depend on each other through boundary conditions applied on the 
porous wavemaker. 

Let the normal velocity of the fluid passing through the porous wavemaker from the 
unbounded region to the bounded region be W(y, t). The linearized boundary conditions 
on both sides of the wavemaker are 

3x = u ° - W  at x = 0  ( i = 1 , 2 ) ,  (7) 

where u 0 is given by Eqn. (2). We shall assume that the porous wavemaker is made of 
material with very fine pores and the porous flow through the wavemaker is not 
significant. Hence, the porous flow velocity W is linearly proportional to the pressure 
difference between the two sides of the wavemaker [6,3], 

W(y, t)= b [ p l ( o ,  y, t ) -  P2(O, y, t)] ,  (8) 

where/~ is the constant coefficient of dynamic viscosity and b is a material constant having 
the dimension of a length. The hydrodynamic pressures Pi(x, y, t) (i = 1, 2) are related to 
the velocity potentials through the linearized Bernoulli equation as 

30i 
ei = --0-- '~ (i = 1, 2), (9) 

where p is the constant density of the fluid. We shall note that the hydrodynamic pressure 
given by (9) is the pressure in excess of the hydrostatic pressure. 

3. The hydrodynamic pressure force 

Following the aPProach of Chwang [3], we assume that the velocity potentials ~Pi, the 
hydrodynamic pressures Pi, and the porous flow W are all periodic functions in t and have 
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a time factor exp(io~t), 

~i=(Pi (x , y )  e i~', P i = p i ( x , y )  e i~'' ( i =  1, 2), (lOa) 

W =  w ( y )  e i~,. (10b) 

The general solution of Eqn. (3) for the unbounded region, satisfying the boundary 
conditions (4) and (5), was given by Chwang [3] as 

41 =Ao cosh koy e -ik°x + £ A.  cos k . y  e -k":', (11) 
n = l  

where k o satisfies the dispersion relation 

o~ 2 = gk o tanh(koh ) (12) 

o r  

1 - Ckoh tanh(koh ) = 0, (13a) 

the kn's are the roots of 

l + C k ~ h t a n ( k , h ) = O  ( n =  1 ,2 ,3  . . . .  ), (13b) 

C is a dimensionless wave-effect parameter [2] defined by 

C = g/(~o2h), (13c) 

and A 0 and A n (n = 1, 2, 3 . . . .  ) are constant coefficients to be determined later by 
applying the boundary condition on the wavemaker surface. The choice of exp( -  ikox ) in 
Eqn. (11) ensures that the surface waves produced by the porous wavemaker propagate 
away from the wavemaker. Similarly, the general solution of Eqn. (3) for the bounded 
region, satisfying the boundary conditions (4), (5), and (6), is obtained by the method of 
separation of variables as 

~b 2 = B 0 cosh koy cos ko( x + L)  + E Bn cos kny cosh k,,( x + L) ,  
n ~ l  

(14) 

where B o and B n (n = 1, 2, 3,. . .  ) are undetermined Fourier coefficients. 
Substituting (11) and (14) into (8), (9), and (10), we have 

l~w( y ) = - io~bp [ ( A o - cos koL) cosh koy + ,,=IE (A,,- cosh k,,Z,) cos k,,y]. 

(15) 

Substituting (11), (14), and (15) into (7) and noting that the eigenfunctions cosh koy and 
cos kny (n = 1, 2, 3 . . . .  ) are orthogonal over the interval from y = 0 to y = h, we obtain 
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A o = - iB  o sin koL 

2~odQoTo [ To(l +Go)+iGo 
k~h(l + CQ20) G g + T2(I + Go) 2 

(16a) 

A .  = - B .  s inh  k .  L 

2~odQ.T~ [ G.(I + T.)+iT. 
= - -  2 . . . .  2 2 k . h ( 1 - C Q . )  T2+Gf ( I+  T.) 

( n = 1 , 2 , 3  .. . .  ), (16b) 

where 

Qo = sinh ko h, Qn = sin k.h ( n = 1 , 2 , 3  .... ), (16c) 

T 0 = t a n k 0 L ,  T n = t a n h k n L  ( n = 1 , 2 , 3  .... ), (t6d) 

G O = GkJko, G., = Gkl/k,, (n = l, 2, 3, . . .) ,  (16e) 

and 

a = ( p ~ b ) / ( ~ k l ) .  (16f) 

We note that the dimensionless porous-effect parameter G defined by (16f) is half of that 
defined by Chwang [3]. G = 0 means that the wavemaker is impermeable. On the other 
hand, as G approaches to infinity, the porous wavemaker becomes completely permeable 
or "transparent" to the fluid; in other words, there would be no wavemaker at all in the 
limit of infinitely large G. 

The net hydrodynamic pressure on the porous wavemaker, normalized with respect to 
oh(-o~2d), is (taking the real part only) 

~'~(o, y, t ) -  e~(o, y, t) 
Cpl cos ~ot + Cql sin wt, 

- po~2dh 
(17a) 

where the in-phase (with respect to the horizontal displacement of the wavemaker) 
pressure coefficient @1 is obtained from Eqns. (9), (10), (l 1), (14), and (16) as 

2QoT 0 cosh koy 
% 

k2h2(1 + CQZ)[G 2 + T2(1 + Go) 2] 

2Q.T.(1 + T~) cos k .y  

°=1 ~ h 2 ( 1 -  c o ~ ) [ v #  + <~(1 + ro~2] ' 
(17b) 
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and the out-of-phase pressure coefficient Cql is given by  

c~,  = _ 
2Qo[G o + T2(1 + Go) ] cosh koy 

k2h2(1 + CQ~)[G 2 + To2(1 + Go) 2] 

2Q.G~(1 + T.) 2 cos k.y 

n = l  k2nh2(1-CQ2n)[Tg +G2(1 + Tn)2] " 
( l V c )  

Similarly, the hydrodynamic pressure on the end plate of the channel is 

P2(-L,y , t )  
_ po~2dh = Ce2 cos o~t + Cq2 sin ~ot, (18a) 

where the dimensionless pressure coefficients Cp2 and Cq2 are 

G 2 =  
2QoTo(1 + Go) cosh koy 

ko2h2(1 + CQ2)[G~ + T02(l + Go) 2] cos koL 

2Q~T. cos k.y 

n = l  kZ~hE(1-CQ~)[T 2 +Gff(1 + T.) 2] cosh k . L  
(18b) 

and 

C q 2  ~ - -  
2QoG 0 cosh koy 

k2h2(1 + CQ~)[G~ + To2(1 + Go) z] cos koL 

_ ~ 2Q.Gn(1 + Tn) cos k,,y (18c) 
2 2 2)[T2 + G2(1 ,,=1 k.h (1-CQ. + T.) 2] c o s h k . L  

respectively. The dimensionless pressure distribution may also be expressed as 

Cp, cos  ,~t + Cqi sin ,,,t = Dp, c o s ( ~ t  - 0pi),  

where 

(19a) 

D., = Cqg) (i = 1, 2), (19b) 

Opi = tan-l(Cqi/Cpi) (i = 1, 2). J (19c) 

In Fig. 2 the dimensionless pressure distributions De1 and Dp2 are plotted versus the 
vertical depth y/h for several different values of G at C = 0 and L/h = 1. We note from 
Fig. 2 that for any fixed values of G, both De1 and Dp2 increase from zero at the free 
surface, y = h, to maximum values at the channel bottom, y = 0. At a given depth, Dpl and 
Op2 decreases as G increases. This is due to the fact that the wavemaker becomes more 
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Figure  2. H y d r o d y n a m i c  pressure distributions on  the w a v e m a k e r ,  Dpl , and on the end plate, Dp2 , at C = 0 and 
L / h  = 1. 

porous and thus exerts less force onto the fluid as G increases. With the parameter G and 
the vertical depth y being fixed, the pressure distribution on the wavemaker, Dpi, is always 
greater than that on the end plate, De2. 

Figure 3 shows the pressure distributions at C = 0.2 and L/h = 1. As explained by 
Chwang [2], the wave-effect parameter C is a direct measure of the gravity effect to the 
inertial effect due to the oscillation of the wavemaker (see Eqn. (13c)). The gravity wave 
on the free surface becomes dominant for large values of C. We note from Fig. 3 that the 
pressure distributions, Dpl and Dp2, are no longer monotonic as in Fig. 2; they oscillate 
near the free surface. We also note that Dpl and Dp2 do not vanish at the free surface, 
y = h, because of the presence of surface gravity waves. They take values corresponding to 
the local hydrostatic pressures. 
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Figure  3. H y d r o d y n a m i c  pressure distr ibutions on  the wavemaker ,  Dpl , and on theiend plate, Dp2, at C = 0.2 and 

Z / h  = 1. 
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The total pressure forces on the porous wavemaker and on the end plate, normalized 
with respect to oh 2 (-~02d), are obtained by integrating (17) and (18) with respect to y 
from y = 0 to y = h, 

CFi C O S  o~t + C m sin o~t = DFi cos(~t - OFi), (20a) 

where 

DFi=(C},+C2i)l/2 ( i =  1, 2), (20b) 

OF, = tan- '( CL,/CF~ ) (i = 1, 2), (20c) 

G1- 
2Q~To 

k3oh3(l + CQ2o)[G~ + To(l + Go) 2] 

2 T.) (20d) - E 2Q"Tn(1 + 
.=1 k ~ h 3 ( 1 - C Q ~ ) [ T ~  + G•(1 + T.)2] ' 

e L l  ~ m 

2Qo2 [Go + T2(1 + Go)] 

ko3h3(1 + CQg)[G 2 + T2(1 + Go) 2] 

2 2 2Q.G.(1 + T.) 
- E  

n=l k3h3 ( l - CQ2n) [ T :  + G:(1 + Tn)2] ' 
(20e) 

CF2-- 
2Qo2To(1 + Go) 

ko3h3(1 + CQ~)[G 2+ T2(1 + Go) 2] cos koL 

2Q.T. 

2 2 Gff(1 + T~) 2] c o s h k . L '  n = l  k 3 h 3 ( 1 -  Cen)[Tn -~- 
(200 

CL2 ~ -- 
2QZGo 

k3h3(1 + CQ~)[Go ~ + r:(1 + Go) ~] cos ~oL 

2 7-.) (20g) _ 2Q.G.(I  + 

z 2 Gff(1 + T.) 2] c o s h k . L "  n=, k3h3(1-CQn)[Vn + 

The dimensionless force on the wavemaker, Dry, is plotted in Fig. 4 versus 1/C for 
three different values of G at L/h  = 1. For an impermeable wavemaker, G = 0, we note 
from Eqns. (20) and (16) that Crl, and hence Dr1, goes to infinity as T o tends to zero. By 
(16d), T o vanishes when koL = m~r (m = 0, 1, 2 . . . .  ). Since the wavenumber k o is equal to 
2¢r/~, where ~ is the wavelength of the surface waves produced by the wavemaker, 

T o = 0  when L = m ( X / 2 )  ( m = 1 , 2 , 3  . . . .  ). (21) 
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Figure 4. The dimensionless net force on the wavemaker for L / h  = 1. 

In Eqn. (21), m = 0 is excluded because L is always positive. Therefore, when the length of 
the finite fluid region, L, is a multiple of the half-wavelength of propagating surface 
waves, resonance will occur. Alternatively, for fixed length L/h, DFi goes to infinity as 

1 
= mqr(h/L) tanh(m~rh/L), (22) 

where m is any positive integer and Eqn. (13a) is applied in deriving (22). For finite values 
of C, Fig. 4 shows that resonance occurs when 1/C is around ~r, 2~r, 3~r, etc. for G = 0 and 
L/h = 1. For a porous wavemaker, G > 0, DFI is always finite even at resonant values of 
1/c. 

For a fixed value of the porous-effect parameter G, G = 1, Fig. 5 shows the dimension- 
less force DF1 v e r s u s  1/C at three different values of L/h. Although DFl is always finite at 
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Figure 5. The dimensionless net force on the wavemaker for G = 1. 
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G = 1, it reaches local peak 
impermeable wavemaker. 

values at resonant values of 1/C corresponding to an 

4. Surface wave profile 

The free surface elevation measured from the undisturbed fluid level at y = h, ~(x, t), is 
related to the velocity potentials by the linearized dynamic conditions at the free surface 

~(x,  t) = 1 0qbi - g  0---~- at y=h (i=1,2).  (23) 

Substituting (10), (11), and (16) into (23) and taking the real part only, we obtain the 
surface wave profile in the unbounded region 

~ll/d = E o sin(kox - cot) - F  o cos(k0x - cot) 

+ ~ (E. cos cot + F. sin cot) e -k-x, (24a) 
n = l  

where 

2Qo2T2(1 + Go) 

E o koh(1 + CQZ)[G ~ + To2( 1 + Go)Z ] (24b) 

2Qo VoCo 
F o = , (24c) 

koh(1 + CQ~)[G~ + To2(1 + Go) 2] 

2 2 2Q.T. 
E. k . h ( I_CQ~)[T  2 +G~(1 + Tn) 2] (24d) 

2 To) 2QnTnG.(1 + 
Fn= k.h(1 - CQ~)[T~ + G2(1 + T.)2] " (24e) 

Similarly, the disturbed free surface elevation in the bounded region between the 
porous wavemaker and the end plate is obtained from (10), (14), (16), and (23) as 

~ J d =  (H o cos cot + I 0 sin cot) cos ko(x + L) 

+ ~ ( H  n cos cot + I n sin wt) cosh k . (x  + L), (25a) 
n = l  

where 

t t o  = - 
2Qo2To(1 + Go) 

koh(1 + CQ~)[G 2 + T2(I + Go) 2] cos koL'  
(25b) 
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2Q~Go 
I o = , (25c) 

koh(1 + C9_ o)[G  + + Go?] cos koL 

2QZT. 
= - , (25d) 

H. k.h(l_CQ2)[T~+GZ(l+T.)Z]coshk. L 

2Q,  G, (1 + 
I, = - . (25e) 

k n h ( l - C Q 2 ) [ T  2 q- G 2 ( 1  --}- Tn) 2] cosh k , L  

We note from (24a) that the free-surface gravity waves propagate in the positive x 
direction away from the wavemaker in the unbounded fluid region. On the other hand, 
both incident and reflected waves are present in finite region between the wavemaker and 
the end plate as seen from Eqn. (25a). Figure 6 shows a typical wave profile in a 
semi-infinitely long channel for different values of G at C = 0.2, ~t  = 0, and L/h = 1. We 
note from Fig. 6 that surface waves due to an impermeable wavemaker (G = 0) have the 
largest amplitude, and the amplitude of the wave decreases as the porous-effect parameter  
G increases. This is quite understandable because the wavemaker becomes more porous as 
G gets larger. Figure 6 also shows that the wave amplitude decreases away from the 
wavemaker for any fixed values of G. The influence of the wave-effect parameter  C on the 
surface wave profile is shown in Fig. 7 for an impermeable wavemaker at o~t = 0 and 
L/h = 1. We observe from Fig. 7 that as C increases from 0.2 to 0.4, the wave amplitude 
decreases while the wavelength almost doubles. At C = 0, surface gravity waves cease to 
exist and the free surface profile resembles that due to a dipole at x = 0 plane, which is the 
mean position of the wavemaker. 

The final output curves of a piston-type porous wavemaker are presented in Figs. 8 and 
9. In Fig. 8 the wave amplitude at infinity, (E 2 + Fo2) 1/2, is plotted versus 1/C for three 
different values of G at L/h = 1; whereas in Fig. 9 G is fixed at one, but L/h takes the 
values of 0.5, 1, and 2. We note from Fig. 8 that the wave amplitude decreases as G 
increases for fixed 1,/C as explained before. As C approaches to zero or 1/C tends to 
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F i g u r e  6. Su r face  wave  prof i le  a t  C = 0.2, o~t = 0, a n d  L / h  = 1. 
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Figure 7. Surface wave profile at G = 0, ~ t  = 0, and L / h  = 1. 
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Figure 8. Output  wave amplitude at infinity for L / h  = 1. 
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infinity, the wave ampli tude approaches to the limiting value of 2 regardless of  the values 
of  G. For  non-vanishing values of G, there is a "wave- t rapping"  phenomenon.  That  is, 
waves will be t rapped inside the channel when L is a multiple of the half-wavelength of  
surface waves (see Eqns. (21) and (22)); the wave ampli tude at infinity tends to zero. The 
dependence of  the ultimate wave amplitude on the distance between the porous wave- 
maker  and the end plate, L / h ,  is shown in Fig. 9 for G = 1. We note f rom Fig. 9 that the 
interval of 1 / C  for wave-trapping to occur is doubled when L / h  is halved. The ultimate 
wave amplitude approaches to 2 as 1 / C  tends to infinity for non-resonant  values of  1/C.  
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